Abstract
AbstractCapacitive deionization (CDI) is proposed as a thermodynamically effective desalination method for treating non‐potable water with a low‐salt concentrator to address the growing need for clean drinking water. MXenes, 2D transition metal carbides derived from Mn+1AXn (n = 1, 2, 3, or 4) bulk phases, are an intriguing class of crystalline materials with unique physicochemical properties. However, a significant challenge for their practical use is the degradation and phase transition experienced by MXene flakes when exposed to aqueous conditions. Several strategies for improving MXene stability are proposed, including combining it with porous materials such as carbon and metal–organic frameworks (MOFs). In addition to ZIFs, antioxidants with amine functional groups are used to stabilize MXene. Additionally, amine‐functionalized MXenes exhibit improved resistance to oxidation caused by water, enabling them to maintain their dispersity in aqueous solutions at room temperature. The produced A‐ZIF@MXene electrode represents high desalination performance with the highest salt adsorption capacity up to 80.3 mg g−1 in 1000 mg L−1 The NaCl solution reserve more than 99% of its initial capacity in 50 cycles to the synergism of its surface amine groups, high hydrophilicity, and distinctive hierarchical porous structure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.