Abstract

Sulfur-based autotrophic denitrification (SAD) and pyrite-based autotrophic denitrification (PAD) are important technologies that address nitrate pollution, but high sulfate production and low denitrification efficiency, respectively, limit their application in engineering. A bio-denitrification reactor with sulfur and pyrite as filler materials was studied to remove NO3–-N from nitrate contaminated water. At an influent NO3–-N concentration of 50 mg/L, NO3–-N removal efficiency of the sulfur/pyrite-based bioreactor was 99.2%, producing less NH4+-N and SO42- than the sulfur-based bioreactor, even after long-term operation. Denitrification performance was significantly related to environmental variable, especially dissolved oxygen. Proteobacteria and Epsilonbacteraeota were the predominant phyla in the sulfur/pyrite-based bioreactor, and fewer dissimilatory nitrate reductions to ammonia process-related bacteria were enriched compared to those in the sulfur-based bioreactor. Sulfur-pyrite bio-denitrification provides an efficient alternative method for treatment of nitrate contaminated water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.