Abstract

Image scaling is a fundamental algorithm used in a large range of digital image applications. In this paper, we propose an efficient VLSI architecture for a novel edge-directed linear interpolation algorithm. Our VLSI design is implemented using high level synthesis (HLS) tool, which generates RTL modules from C/C++ functions. HLS provides significantly improved design productivity compared to the traditional RTL-based design flow. So we explored a large design space including several fine-grained and coarse-grained optimizations in the pipeline architecture design. Our architecture is verified in a working system based on Xilinx Kintex-7 FPGA. Experiments show that our design can process UHD (3840*2160) videos at 30fps with moderate resource utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.