Abstract

We sought novel approaches to improve transfection efficiencies of microRNAs (miRNAs) in platelets, and to apply these approaches to investigate the roles of miRNAs in regulating signal-activated protein translation and functional effects. We found that ex vivo human platelets support gymnosis––-internalization of ectopic miRNAs following co-incubation in the absence of conventional transfection reagents or schemes---and subsequently incorporate transfected miRNA into ARGONAUTE2 (AGO2)-based RNA-induced silencing complexes (RISC). Thrombin/fibrinogen stimulation activated translation of miR-223-3p target SEPTIN2, which was suppressed by miR-223-3p transfection in an AGO2/RISC-dependent manner. Thrombin/fibrinogen-induced exosome and microvesicle generation was inhibited by miR-223-3p transfection, and this effect was reversed with a RISC inhibitor. Platelet gymnosis of naked miRNAs appeared to be mediated in part by endocytic pathways including clathrin-dependent and fluid-phase endocytosis and caveolae. These results demonstrate the ability of ex vivo platelets to internalize ectopic miRNAs by unassisted transfection, and utilize them to modulate signal-activated translation and platelet function. Our results identify new roles for miR-223-3p in extracellular vesicle generation in stimulated platelets. High-efficiency gymnotic transfection of miRNAs in ex vivo platelets may be a broadly useful tool for exploring molecular genetic regulation of platelet function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.