Abstract

There has been a growing interest in developing high-efficiency ultrafast optical-to-electrical converters for advanced imaging and sensing applications. Here, we propose a three-dimensional (3D) plasmonic platform based on InAs nanowire arrays with self-assembled gold gratings, which converts a telecom-wavelength (1550nm) optical beam to sub-picosecond current pulses with quantum efficiency up to 18.3%, while operating in photovoltaic mode, i.e., at zero bias. Using a comprehensive 3D photoresponse model, we reveal that the incident photons form tightly confined fields near the gratings at nanowire tips, and thus a majority of the photogenerated carriers are efficiently routed to the metal within a few tens of nanometers distance, resulting in ultrafast current pulses. In addition, we show that the amplitude of current pulses is robust to the nanowire surface quality and can be effectively tuned by varying the doping levels in nanowires. This work paves a way to realizing a low-power, highly compact, and low-cost device scheme for ultrafast pulse generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.