Abstract

Brassica oleracea var. botrytis, a very popular crop grown for its edible inflorescence, is bred only as a mutated annual cultivar and does not naturally occur in environment. Since cauliflower is still described as the most troublesome of all the B. oleracea vegetables regarding transformation processes, it is fully justified to focus on the improvement of tools for its genetic modifications. Here, we present a successful protocol for genetic transformation of cauliflower employing the process of agroinfection. The primary analysis of in vitro response of five cultivars allowed us to have chosen Pionier as the most promising cultivar; in consequence the Pionier was transformed via Rhizobium-mediated techniques in order to evaluate both, R. radiobacter (EHA 105, LBA 4404) and R. rhizogenes (ATCC 18534, A4) species. However, the latter system turned out to be more effective and, the A4 strain, in particular (72% transformation efficiency, 55% confirmed by GUS assay). That shows a promising technical advance especially when compared to the results of previous literature reports (e.g. 8.7% reported efficiency using R. rhizogenes). The transgenic cauliflower was obtained from hairy roots via organogenic callus induction. The potential transformants were analysed at the genomic and proteomic levels and their transgenic character was fully confirmed.

Highlights

  • Brassica oleracea, a species commonly known for its polymorphism, comprises a number of varieties of significant importance for human consumption

  • We presented a simple procedure for the R. rhizogenes-mediated transformation via the indirect regeneration process in cauliflower hypocotyl explants

  • Pavlović and colleagues (2010) precisely indicated that the percentage of in vitro responding explants critically depended on the explant type, and they pointed out hypocotyls as the best starting material for the majority of the cole crops

Read more

Summary

Introduction

A species commonly known for its polymorphism, comprises a number of varieties of significant importance for human consumption. This opulent species includes, among others, cabbage, broccoli, brussels sprouts and cauliflower, and because of its nutritional importance is a subject of both conventional and biotechnological breeding and modifications (Vinterhalter et al 2007). Some of the cole crops (e.g. broccoli and cauliflower) were proved to reduce the risk of cancer in several organs (Spini and Kerr 2006). For these reasons, research on genetic engineering of the Brassicaceae family has aroused huge interest in recent years, especially. The literature data suggest that the hypocotyl of cauliflower seems to be an explant of choice for the studies on regeneration, pointing at its amenability to in vitro handling (Brown and Wang 2004)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.