Abstract

Pure (K0.5Na0.5)NbO3 (KNN) ceramics with high density, fine and uniform-size grains were prepared by mechanochemical activation-assisted process. The time of synthesis is only 100 min, which is 72% – 93% shorter than the 6–24 h of the conventional solid-state method. Compared to samples prepared by conventional solid-state method, both the microstructure evolvement and electric properties were explored in detail. Results show the electric properties was significantly improved. Moreover, the dielectric and ferroelectric properties of obtained KNN ceramics exhibit strong dependence on the crystal size of the initial powders. The optimized ceramics HKNN100 showed a quite high energy storage performance, i.e., large electric energy storage density (Wtol = 1.612 J/cm3) and recoverable energy storage density (Wrec = 0.431 J/cm3), which can be mainly ascribed to the large dielectric breakdown strength (DBS = 110 kV/cm). Our works demonstrated that mechanochemical activation-assisted method possesses advantages for high-efficiency preparation of KNN or KNN-based ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.