Abstract

This study presents a fast precision measurement method that uses pattern recognition. First, a specific micro-structured surface was designed and manufactured, providing a unique pattern for recognition and matching. Second, a measurement system was proposed based on the algorithms of circle Hough transform (CHT), neural classifier (NC), template matching (TM) and sub-pixel interpolation (SI). Then, a series of experiments were carried out from three aspects: circle detection, length uncertainty, and measurement speed and range. The results showed the correct circle classification percentage was more than 96% and the CHT search accuracy was within a two-pixel level. The length uncertainty test demonstrated the method was able to achieve 90-nm length uncertainty, and a comparison of measurement speeds showed it helped to speed up measurements by a factor of 1000 compared to the original one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call