Abstract

Light-emitting diodes with perovskite luminophores have great potential in next-generation displays because of their exceptional color purity with narrow emission bandwidth, broadband color tunability, and solution processability. However, their low luminescent efficiency is a critical drawback. Here, we report the first demonstration of a multicolor, large-area, perovskite display, which can be made flexible by using an optimized perovskite emissive layer sandwiched between inorganic metal oxide charge transport layers, all of which are coated via a facile solution process. We show that advanced interfacial engineering, especially the energy level alignment at the interface, plays a vital role in determining the device performance because of its effects on charge injection, transport, and recombination. These devices exhibit maximum current and power efficiencies of 74.25 cd A−1 and 89.72 lm/w for green emission, 21.40 cd A−1 and 25.84 lm/w for red emission, and 15.21 cd A−1 and 15.84 lm/w for blue emission, respectively. Furthermore, with the introduction of inorganic charge transport layers, these devices exhibit high environmental stability, and the encapsulated devices have operating lifetimes exceeding 450 h with an initial brightness of 1000 cd/m2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.