Abstract
Silicon has been regarded as a notoriously poor emitter of light fundamentally due to its indirect bandgap. However, as an elemental rather than a compound semiconductor, it has the advantage of fewer background defects as well as well-developed approaches to interface passivation. By minimising parasitic optical absorption and non-radiative bulk and surface recombination, and by enhancing the effective optical photon generation volume, respectable silicon light emission efficiencies are demonstrated. These are within the range of direct gap III–V semiconductors and higher than any at low powered densities. Possible applications are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.