Abstract

By directly simulating Maxwell's equations via the finite-difference time-domain (FDTD) method, we numerically demonstrate the possibility of achieving high-efficiency second harmonic generation (SHG) in a structure consisting of a microscale doubly-resonant ring resonator side-coupled to two adjacent waveguides. We find that ≳ 94% conversion efficiency can be attained at telecom wavelengths, for incident powers in the milliwatts, and for reasonably large bandwidths (Q ∼ 1000s). We demonstrate that in this high efficiency regime, the system also exhibits limit-cycle or bistable behavior for light incident above a threshold power. Our numerical results agree to within a few percent with the predictions of a simple but rigorous coupled-mode theory framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call