Abstract

Pyrethroids are ubiquitously present in environmental media and threaten both the ecosystem and human health. To explore effective ways to remove pyrethroids from the environment, an odorant binding protein (OBP) with affinity for various pyrethroids was investigated. Initially, the target OBP, Spodoptera littoralis pheromone binding protein 1 (SlitPBP1), underwent redesign to enhance its affinity for pyrethroids. The modified SlitPBP1E97ND106E demonstrated a substantially increased affinity for deltamethrin (DeltaM), with a dissociation constant of 0.77 ± 0.17 μM. The affinity of SlitPBP1E97ND106E for other pyrethroids also increased to varying extents. Consequently, SlitPBP1E97ND106E displayed a markedly enhanced capability to adsorb and remove pyrethroids. When exposed to free SlitPBP1E97ND106E in solution, the reduction in DeltaM surged from 16.78 ± 0.32% to 97.51 ± 0.56%. SlitPBP1E97ND106E was immobilized by coupling the protein to Ni2+-NTA agarose resin. Liquid chromatography results attested to the superior efficacy of immobilized SlitPBP1E97ND106E in removing pyrethroids, especially DeltaM. No significant differences in pyrethroid removal were detected across various water samples. Our findings introduce a potent tool for pyrethroid removal. A wider range of OBPs can similarly be optimized and applied to remove organic pollutants, including but not limited to pesticides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call