Abstract
The efficiency of plasmid gene transfer in skeletal muscle is significantly enhanced by pretreatment with hyaluronidase and the application of an electrical field to the muscle following the injection of plasmid DNA, a process referred to as electrotransfer. However, the presence of increased levels of connective tissue in muscular dystrophies, such as Duchenne muscular dystrophy (DMD), may affect the efficiency of this process. Here we demonstrate that the efficiency of electrotransfer is not affected by increased levels of connective tissue in the mdx mouse model of DMD and that any damage induced by the electrotransfer process is not exacerbated in the dystrophic phenotype. However, increasing the concentration of hyaluronidase does not improve transfection efficiencies further. Unlike direct injection of plasmid DNA, the efficiency of electrotransfer is not dependent upon the sex and age of mice used. The combined treatment of hyaluronidase and electrotransfer results in highly efficient gene transfer in dystrophic muscle with limited muscle damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.