Abstract

Developing an energy supply based on resources whose use does not spoil the noosphere and the creation of such energy supply of efficient equipment whose operation does not cause any damage to nature and man is an urgent task. The need for such an approach is especially relevant and noticeable in agriculture. This article presents the final results of complex studies of new PV devices and PV systems based on them. Considered in the article are the best solutions we propose to improve PV equipment and make it more attractive for agricultural consumers. The developed vertical and planar high-voltage multijunction silicon PV cells and PV modules on their basis are presented. The first type of modules have a maximum power point voltage of up to 1000 V, specific power of up to 0.245 ± 0.01 W/cm2, and efficiency of up to 25.3% under a concentration ratio range of 10–100 suns. The samples of the second module type (60,156.75 × 156.75 mm PV cells) have an open-circuit voltage of 439.7 V, a short-circuit current of 0.933 A, and a maximum power of 348 W. Additionally, two types of newly designed solar energy concentrators are described in this article: one-dimensional double-wing concentrator ensuring low Fresnel optical losses and multi-zone parabolotoric microconcentrator with the uniform radiation distribution in the focal region, as well as modules based on these concentrators and the developed PV cells. For PV modules, the maximum power degradation is 0.2–0.24% per year in a wet ammonia environment. For concentrating PV modules, this degradation is 0.22–0.37% per year. This article sets out the principles of increasing the efficiency of PV systems by increasing the level of systematization and expanding the boundaries of PV systems. The thus-created PV systems satisfy 30–50% more consumer needs. Thanks to a higher output voltage and other specific features of the developed modules, PV system loss decreased by 12–15%, and maintenance losses also decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call