Abstract

Light trapping is essential to improve the performance of thin film solar cells. In this paper, we performed a parametric optimization of double-sided skewed nanopyramid arrays that act as a light trapping scheme to increase light absorption in thin-film c-Si solar cells. Our theoretical optimization reveals that the short-circuit current density in a solar cell, employing only 1 μm silicon could reach as high as 38.57 mA cm−2, which is 17% and 245% higher than that of the Yablonovitch limit and planar-film counterparts, respectively. Furthermore, we analyzed the underlying physics of the light absorption enhancement through electric field intensity profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call