Abstract

BackgroundHelmet continuous positive airway pressure (CPAP) has been widely used during the COVID-19 pandemic. Specific filters (i.e. High Efficiency Particulate Air filter: HEPA; Heat & Moisture Exchanger Filter: HMEF) were used to prevent Sars-CoV2 environmental dispersion and were connected to the CPAP helmet. However, HEPA and HMEF filters may act as resistors to expiratory gas flow and increase the levels of pressure within the hood. MethodsIn a bench-top study, we investigated the levels of airway pressure generated by different HEPA and HMEF filters connected to the CPAP helmet in the absence of a Positive End Expiratory Pressure (PEEP) valve and with two levels of PEEP (5 and 10 cmH2O). All steps were performed using 3 increasing levels of gas flow (60, 80, 100 L/min). ResultsThe use of 8 different commercially available filters significantly increased the pressure within the hood of the CPAP helmet with or without the use of PEEP valves. On average, the increase of pressure above the set PEEP ranged from 3 cmH2O to 10 cmH2O across gas flow rates of 60 to 100 L/min. The measure of airway pressure was highly correlated between the laboratory pressure transducer and the Helmet manometer. Bias with 95% Confidence Interval of Bias between the devices was 0.7 (-2.06; 0.66) cmH2O. ConclusionsThe use of HEPA and HMEF filters placed before the PEEP valve at the expiratory port of the CPAP helmet significantly increase the levels of airway pressure compared to the set level of PEEP. The manometer can detect accurately the airway pressure in the presence of HEPA and HMEF filters in the helmet CPAP and its use should considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.