Abstract

Many practical problems, such as the Malthusian population growth model, eigenvalue computations for matrices, and solving the Van der Waals' ideal gas equation, inherently involve nonlinearities. This paper initially introduces a two-parameter iterative scheme with a convergence order of two. Building on this, a three-parameter scheme with a convergence order of four is proposed. Then we extend these schemes into higher-order schemes with memory using Newton's interpolation, achieving an upper bound for the efficiency index of 7.8874813≈1.99057. Finally, we validate the new schemes by solving various numerical and practical examples, demonstrating their superior efficiency in terms of computational cost, CPU time, and accuracy compared to existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.