Abstract

We report the synthesis and characterization of three novel bis-cyclometalated iridium complexes with phenyl-benzoquinoline (pbq) analogs as ligands, namely, Ir(pbq-f)2acac, Ir(dpbq-f)2acac, and Ir(pbq-g)2acac, where pbq-f, dpbq-f and pbq-g representing 3-phenyl-benzo[f]quinoline, 1,3-diphenyl-benzo[f]quinoline, and 2-phenyl-benzo[g]quinoline, respectively. Interesting distinctions were observed in the electronic structures, photophysical and electroluminescent properties of these complexes. Ir(pbq-f)2acac and Ir(dpbq-f)2acac are orange-red emissive phosphors with strong metal–ligand charge transfer (3MLCT) emission bands centered at 577 and 604nm, respectively, while Ir(pbq-g)2acac shows the largest red-shift to near-infrared (NIR) region with a peak emission at 708nm and a shoulder around 780nm in solution. All the phosphors exhibit strong electrophosphorescence with negligible triplet-triplet annihilation due to quite short phosphorescent lifetimes (∼0.5µs) and high emission quantum yields. Orange-red emissive Ir(dpbq-f)2acac gives a maximum current efficiency of 17.4 cd/A and external quantum efficiency (ηext) of 10.5%. NIR emissive Ir(pbq-g)2acac shows a promising emission centered at 720nm with a shoulder above 780nm. Forward light output is 4.6 mW/cm2 at 13V and the maximum ηext is nearly 1.1%. Our study demonstrates that the constitutional isomers of cyclometallated ligand distinctly control the electronic structures and emissive properties of the corresponding Ir complexes and the obtained NIR emissive Ir(pbq-g)2acac implies the potential to realize highly efficient NIR OLEDs based on Ir(III) complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.