Abstract

A combination of quasi-one-dimensional grating and plasmonic micro-cavity is proposed as a normal-illuminated optical coupler for a long wavelength quantum cascade infrared detector. A finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the optical coupler. The average |Ez|2 in the active layer reaches 4.1 (V/m)2 under the 13.5 μm infrared normal illumination with a strength of 1 (V/m)2. A mixed state of localized surface plasmon and surface plasmonic polariton is observed. The results confirm that the quasi-one-dimensional grating plasmonic micro-cavity structure could generate more plasma excitation source, and as a consequence, a high optical coupling efficiency of 410% in the active region is obtained. Moreover, an excellent polarization-discriminating performance is observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call