Abstract

Currently, China's timber industry is in high demand with the development of real estate. However, there is a certain fire hazard in the production process of wood manufacturing. Once a fire occurs, the fire is violent and the spread is rapid. Therefore, to improve the safety of its production process, ammonium dihydrogen phosphate and magnesium hydroxide were selected to prepare a new composite superfine dry powder, which was denoted as the NH4H2PO4/Mg(OH)2 composite. Furthermore, to figure out dry powders' extinction effect on Class A fire, the wood-crib fire suppression effect of the NH4H2PO4/Mg(OH)2 composite was test, and then compared with that of ultrafine dry powder (UDP) and commercial ABC dry powder (C-ABC) in a 1 m³ chamber. Three parameters of the fire extinguishing process, namely flame extinction time, powder consumption and temperature drop were adopted to measure the fire suppression performance. The results demonstrated that UDP and C-ABC both had a larger flame extinction time and powder consumption than the NH4H2PO4/Mg(OH)2 composite. Besides, a fire (wood cribs) can be extinguished by the NH4H2PO4/Mg(OH)2 composite with the fastest temperature drop and a much-improved toxic gas suppression ability. In short, the NH4H2PO4/Mg(OH)2 composite can better guarantee the safety of the wood processing production process. Moreover, the reasons for performance advantages of the NH4H2PO4/Mg(OH)2 composite were discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.