Abstract

We investigated hydrogen peroxide production in mitochondria with low (liver, heart, brain) and high (brown adipose tissue, BAT) content of glycerophosphate dehydrogenase (mGPDH). ROS production at state 4 due to electron backflow from mGPDH was low, but after inhibition of electron transport with antimycin A high rates of mGPDH-dependent ROS production were observed in liver, heart and brain mitochondria. When this ROS production was related to activity of mGPDH, many-fold higher ROS production was found in contrast to succinate- (39-, 28-, 3-fold) or pyruvate plus malate-dependent ROS production (32-, 96-, 5-fold). This specific rate of mGPDH-dependent ROS production was also exceedingly higher (28-, 66-, 22-fold) compared to that in BAT. mGPDH-dependent ROS production was localized to the dehydrogenase + CoQ and complex III, the latter being the highest in all mitochondria but BAT. Our results demonstrate high efficiency of mGPDH-dependent ROS production in mammalian mitochondria with a low content of mGPDH and suggest its endogenous inhibition in BAT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call