Abstract

Snake venom phosphodiesterase (SVP) catalyzes the alcoholysis of ATP by primary R-CH2OH alcohols with uncharged R residues, yielding AMP-O-CH2R esterification products. The alcohols compete with water for an SVP-bound adenylyl intermediate. In this study, it has been shown that SVP also catalyzes the reactions of glycerol 2-phosphate and sn-glycerol 3-phosphate with ATP to yield AMP-O-glycerophosphoryl esters. The products were identified by HPLC, the dependency of the reactions on glycerol phosphates, ultraviolet spectroscopy, and conversion to AMP by phosphodiesterase, or to AMP-O-glyceryl esters by alkaline phosphatase. The results demonstrated that R-CH2OH alcohols with negatively charged R residues, as well as secondary alcohols, act as adenylyl acceptors in SVP reactions, thus extending the usefulness of SVP as a tool to produce 5'-nucleotide derivatives. The efficiencies (EA) of glycerol phosphates as adenylyl acceptors were very high at low, millimolar concentrations, but decreased abruptly when the acceptor concentration was increased and, for glycerol 2-phosphate, when Pi or NaCl was present. In contrast, glycerol EA was independent of its own concentration, Pi, and NaCl. The responses of glycerol phosphates indicate that they act as adenylyl acceptors via a mechanism different from uncharged R-CH2OH alcohols. The occurrence of an acceptor-binding enzyme site, specific for negatively charged R residues, and its potential relevance to the in vivo role of 5'-nucleotide phosphodiesterases as 5'-nucleotidyl transferases are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.