Abstract

In this work, high-efficiency nonfullerene polymer solar cells (PSCs) are developed based on a thiazolothiazole-containing wide bandgap polymer PTZ1 as donor and a planar IDT-based narrow bandgap small molecule with four side chains (IDIC) as acceptor. Through thermal annealing treatment, a power conversion efficiency (PCE) of up to 11.5% with an open circuit voltage (Voc ) of 0.92 V, a short-circuit current density (Jsc ) of 16.4 mA cm-2 , and a fill factor of 76.2% is achieved. Furthermore, the PSCs based on PTZ1:IDIC still exhibit a relatively high PCE of 9.6% with the active layer thickness of 210 nm and a superior PCE of 10.5% with the device area of up to 0.81 cm2 . These results indicate that PTZ1 is a promising polymer donor material for highly efficient fullerene-free PSCs and large-scale devices fabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call