Abstract

Tremendous efforts have been made on researching triplet-triplet annihilation (TTA) and thermally activated delayed fluorescence (TADF) materials for realizing high-efficiency blue organic light-emitting diodes (OLEDs) through utilizing triplet exciton conversion to the lowest singlet excited state (S1) from the lowest triplet excited state (T1). However, hot exciton conversion from the upper triplet energy level state (Tn, n > 1) to the lowest singlet excited state (S1) is an increasingly promising method for realizing pure-blue non-doped OLEDs with performances comparable to those of TTA and TADF materials. Herein, two pure-blue fluorescent emitters of donor (D)-π-acceptor (A) type, PIAnCz and PIAnPO, were designed and synthesized. The excited-state characteristics of PIAnCz and PIAnPO, confirmed by theoretical calculations and photophysical experiments, demonstrated these materials' hot exciton properties. Based on PIAnCz and PIAnPO as emission layer materials, the fabricated non-doped devices exhibited pure-blue emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.12) and (0.16, 0.15), maximum luminescences of 10,484 and 15,485 cd m-2, and maximum external quantum efficiencies (EQEs) of 10.9 and 8.3%. Besides, at a luminescence of 1000 cd m-2, the EQEs of PIAnPO-based devices can still be high at 7.7%, and the negligible efficiency roll-off was 6.0%. The device performance of both materials demonstrates their outstanding potential for commercial application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.