Abstract
The emergence of electric vehicles equipped with lithium-ion batteries has largely alleviated the environmental crisis, however, the safety and sustainable development of lithium-ion batteries under mechanical abuse conditions is increasingly becoming an obstacle for the promotion of electric vehicles. Lithium-ion batteries exhibit mechanical, electrical, thermal and other multiphysics coupling response behaviors when suffering from mechanical abuse such as compression. In this paper, two high-efficiency multiphysics coupling frameworks and strategies (calculation process) are proposed innovatively. Three abuse tests, flat plate test, rigid rod test and hemispherical punch test under the quasi-static condition are carried out to create mechanical abuse conditions. The geometric-level multiphysics coupling model couples the 3D mechanical model, the 3D thermal model, the 0D battery electrical model and the 0D short-circuit model to provide visual simulation results for battery failure analysis. The simulation results show that the geometric-level multiphysics coupling model can accurately explain the battery failure behavior under a variety of operating conditions, with a calculation time of no more than 1 h on a universal computation platform. The lumped-parameter high-efficiency multiphysics coupling model adopts the lumped-parameter mechanical model and the lumped-parameter thermal model, avoids the finite element calculation process, and can provide efficient and accurate semi-quantitative calculation results for battery safety analysis in the absence of a high-performance computing platform. The calculation time on the universal computation platform is no more than 5 s. The two high-efficiency multiphysics coupling frameworks can adapt to different computational analysis scenarios, helping to analyze the failure mechanism of lithium-ion batteries, improve the safety and maintain the sustainable development of lithium-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.