Abstract

As a distinguished luminescent matrix, rare earth (RE)-doped glass has garnered considerable attention across lighting, display, laser, and related domains. Nonetheless, the limited luminescent efficiency of such glass imposes constraints on its extensive utilization. In addressing this challenge, we have developed a novel formulation involving heavily Eu3+-doped black talc glass, boasting exceptional optical characteristics. Structural examination has validated the successful synthesis of the parent glass matrix comprising [SiO4] and [AlO4] units. With the escalating of Eu3+ doping concentrations, the glass manifested an upward trend in both density and refractive index. Under the excitation of 393 nm light, the glass exhibited strong red light emission, demonstrating a high internal quantum efficiency (IQE) of up to 84.67 %, surpassing markedly other Eu3+-doped glass variants. Furthermore, even under elevated temperatures reaching 150 °C, the glass retained 86.2 % of its luminescent intensity at room temperature, indicative of superior thermal resilience vis-à-vis alternative glass systems. As a proof-of-concept, we encapsulated a white light-emitting diode (W-LED) assembly employing a 395 nm LED chip, Eu3+-doped glass, BaMgAl10O17:Eu2+ blue phosphor, and Ba2SiO4:Eu2+ green phosphor. The resultant device exhibited favorable chromaticity coordinates (0.3566, 0.3994), boasting a correlated color temperature (CCT) of 4791K and a high color rendering index (CRI) of 91. In summary, this investigation employs black talc ore to synthesize luminescent glass, thereby not only diversifying the application scope of black talc but also augmenting its additional value, while notably enhancing the luminescent efficiency of the glass through heavy Eu3+ doping. Through empirical validation, the significant potential benefits of Eu3+-doped black talc glass in the realm of W-LED lighting were convincingly demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call