Abstract

Fine structured targets are promising in enhancing laser-driven proton acceleration for various applications. Here, we apply 3D-printed microwire-array (MWA) structure to boost the energy conversion efficiency from laser to proton beam. Under irradiation of high contrast femtosecond laser pulse, the MWA target generates over 1.2 × 1012 protons (>1 MeV) with cut-off energies extending to 25 MeV, corresponding to top-end of 8.7% energy conversion efficiency. When comparing to flat foils the efficiency is enhanced by three times, while the cut-off energy is increased by 32%. We find the dependence of proton energy/conversion-efficiency on the spacing of the MWA. The experimental trend is well reproduced by hydrodynamic and Particle-In-Cell simulations, which reveal the modulation of pre-plasma profile induced by laser diffraction within the fine structures. Our work validates the use of 3D-printed micro-structures to produce high efficiency laser-driven particle sources and pointed out the effect in optimizing the experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.