Abstract

This study presents a high-efficiency-isolated single-input multiple-output bidirectional (HISMB) converter for a power storage system. According to the power management, the proposed HISMB converter can operate at a step-up state (energy release) and a step-down state (energy storage). At the step-up state, it can boost the voltage of a low-voltage input power source to a high-voltage-side dc bus and middle-voltage terminals. When the high-voltage-side dc bus has excess energy, one can reversely transmit the energy. The high-voltage dc bus can take as the main power, and middle-voltage output terminals can supply powers for individual middle-voltage dc loads or to charge auxiliary power sources (e.g., battery modules). In this study, a coupled-inductor-based HISMB converter accomplishes the bidirectional power control with the properties of voltage clamping and soft switching, and the corresponding device specifications are adequately designed. As a result, the energy of the leakage inductor of the coupled inductor can be recycled and released to the high-voltage-side dc bus and auxiliary power sources, and the voltage stresses on power switches can be greatly reduced. Moreover, the switching losses can be significantly decreased because of all power switches with zero-voltage-switching features. Therefore, the objectives of high-efficiency power conversion, electric isolation, bidirectional energy transmission, and various output voltage with different levels can be obtained. The effectiveness of the proposed HISMB converter is verified by experimental results of a kW-level prototype in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.