Abstract

AbstractHigh‐efficiency solar cells are essential for high‐density terrestrial applications, as well as space and potentially vehicle applications. The optimum bandgap for the terrestrial spectrum lies beyond the absorption range of a traditional dual junction GaInP/GaAs cell, with the bottom GaAs cell having higher bandgap energy than necessary. Lower energy bandgaps can be achieved with multiple quantum wells (QWs), but such a pathway requires advanced management of the epitaxial growth conditions in order to be useful. Strain‐balanced GaAsP/GaInAs QWs are incorporated into a single junction GaAs solar cell and a dual junction GaInP/GaAs solar cell, leading to 27.2% efficiency in the single junction device and a one‐sun record 32.9% efficiency in the tandem device. Good carrier collection and low non‐radiative recombination are observed in the cells with up to 80 QWs. The GaAs cells employ a rear‐heterojunction architecture to boost the open‐circuit voltage to over 1.04 V in the quantum well device, despite the large number of QWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.