Abstract

Plasma enhanced CVD silicon nitride is introduced for the fabrication of inversion layer solar cells on p-type polycrystalline silicon. The same high interface quality as obtained for Si-nitride on monocrystalline silicon could also be achieved for polycrystalline silicon. This includes high interface charge densities up to 6.6 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> and high UV sensitivity of the cells. For 4-cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> polycrystalline metal-insulator-semiconductor inversion layer (MIS/IL) solar cells active area efficiencies up to 13.4 percent (12.3-percent total area efficiency) under AM1 illumination could be reached, the highest values yet reported for polycrystalline silicon inversion layer solar cells on a total area basis. For the coprocessed MIS/IL cells on monocrystalline 0.7-ω. cm p-Si

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.