Abstract

In this study, novel three-dimensional (3-D) nanoscale structures and methodology are demonstrated for application in high-efficiency core–shell nanorod (NR) light-emitting diodes (LEDs). The key to our successful growth of the structures is the introduction of passivation, which can be used to selectively grow active layers in desired structures. Through the fabrication methodology, core–shell NR green LEDs exhibiting large nonpolar active region and homogeneous indium distributions without a point tip shape were achieved. Stable light emission at a central wavelength of 518 nm was achieved as the injected current increased to more than 40 mA. The improved NR LEDs exhibited a stable luminescence emission wavelength (blueshift of 62 nm) and low-efficiency droop (18.1%) at 200 mA. Our scheme is scalable and compatible with current technologies, which provides a new perspective for developing high-performance, 3-D nanoscale optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.