Abstract

Inducible gene expression systems are needed in functional genomics of tree species. A glucocorticoid-inducible gene expression system was established in a gymnosperm species Virginia pine (Pinus virginiana Mill.) through Agrobacterium tumefaciens-mediated genetic transformation. The results demonstrate that expression of the m-gfp5-ER reporter gene was tightly controlled and 0.1 microM of the glucocorticoid hormone triamcinolone was able to induce m-gfp5-ER expression in transgenic cells. Differential expression of gfp in transgenic cells induced by different concentrations of triamcinolone was observed and confirmed by Northern Blot analysis and by quantitative green fluorescence analyses with Laser Scanning Microscopy. In transgenic plantlets, triamcinolone was taken up efficiently by roots. Triamcinolone was able to induce m-gfp5-ER activity throughout the whole plant. The phenotype of transgenic plantlets was not affected 6 weeks after treatment with 0.1-10 microM triamcinolone. However, 6-week inductions with 100 microM triamcinolone caused growth retardation and developmental defects, as well as inhibition of root formation and elongation. With careful selection of transgenic lines, the inducible gene expression presented in this study could be a very valuable alternative for functional identification of novel genes in plants, especially in pine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.