Abstract
In the field of organic photovoltaics, the power conversion efficiency of single junction solar cells continues to improve. However, tandem organic solar cells are poised to push the efficiency limits even further and offer a promising avenue for improving the performance of organic photovoltaic devices. This study reports the development of an all-solution processed interconnecting layer (ICL) based on ZnO NPs:PEI/PEI/PEDOT:PSS/2PACz for tandem solar cells. The PM6:BTP-eC9 active layer material was adjusted for its donor-to-acceptor (D/A) ratio and film thickness as the front and back sub-cells. The ICL exhibits favorable mechanical, electrical and optical properties. Through multidimensional modulation, the front and rear sub-cells have been optimized to obtain highly efficient homojunction tandem solar cells. The tandem solar cell has a structure of indium tin oxide (ITO)/PEDOT:PSS/2PACz/active layer/ICL/active layer/PNDIT-F3N/Ag. This optimization resulted in a power conversion efficiency (PCE) of 19.9 %, which is the highest reported efficiency for homojunction tandem organic solar cells to date. Our research demonstrates that the PCE of homojunction tandem cells can be significantly improved by careful design of the interconnecting layers and optimization of the donor-to-acceptor (D/A) ratio. This strategy may provide guidance for further improvements in homojunction tandem cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.