Abstract
In this article, a high-efficiency high-power-density wide-bandgap-based CLLC resonant converter with a low-stray-capacitance and well-heat-dissipated planar transformer is presented, which is used as the isolated dc-dc stage for an electric vehicle on-board charger. A generalized planar transformer design methodology is proposed and validated by practical designs and experimental tests. A novel and simple transformer configuration is proposed to reduce the winding stray capacitance and enhance the winding thermal dissipation. The proposed transformer configuration is compared with different planar transformer designs, and the tradeoffs of employing the proposed design are well analyzed. Moreover, the system design and optimization of the high-efficiency high-power-density CLLC resonant converter is studied. The proposed transformer design and the system optimization approach are employed in a 6.6-kW/500-kHz CLLC resonant converter prototype. The prototype achieves a peak efficiency of 97.85% and a power density of 114 W/in$^\text {3}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.