Abstract
The objective of this study is to develop a high-efficiency double effect absorption cycle using multi-heat sources for tri-generation (trigen) application. The trigen system produces electricity, heating and cooling loads at the same time. The double-effect absorption refrigeration system consists of two generators, condensers, solution heat exchangers, expansion valves, an absorber and an evaporator. The cycle simulation is carried out for the H2O/LiBr double effect absorption cycle with multi-heat sources for parallel, serial, reverse, revised serial and revised reverse flow patterns. The absorption refrigeration system uses the high temperature steam and hot water as the multi-heat sources. A new high-efficiency cycle is selected depending on the arrangements of additional heat exchangers. This study recommends HX 2-2 cycle with two additional heat exchangers (SDHHX and DHX) as the best candidate for trigen application. It is concluded that THotwater has much more significant effect on the COP and Q̇E than Tsteam in the HX 2-2 cycle. It is also found that the most important UA to affect the COP is UALG while that to affect Q̇E is UAA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.