Abstract

We have developed green phosphorescent organic light-emitting devices (OLEDs) with high quantum and luminous efficiencies. A green phosphorescent metal complex, fac-tris(2-phenylpyridine) iridium [Ir(ppy)3], was used as an emitter material. Wide-energy-gap materials with high triplet excited energy levels were used as host materials for Ir(ppy)3 and as carrier transport materials. Hole injection and electron injection from the electrodes were balanced by placing chemically doped layers at the interface between the electrodes and the organic layers. In addition, a highly reflective Ag cathode was employed as an anode, instead of a conventional Al cathode to enhance the reflectivity of the cathode metal. An optimized device exhibited an external quantum efficiency (EQE) of 27% (95 cd/A) and a high power efficiency of 97 lm/W at 100 cd/m2 at 3.1 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call