Abstract

The fabrication of a high performance GaAs0.7P0.3 solar cell on a transparent GaP substrate with an AM1.5 efficiency of 15.4% for a concentration ratio of 30× is reported for the first time. The measured transparency of the GaP substrate allows these cells to be mechanically stacked on silicon solar cells in a manner that should yield combined conversion efficiencies well over 25%. This mechanically stacked two-band-gap cell design is particularly attractive because it utilizes the already well-developed Si solar cell and because the materials foundation for the GaAs0.7P0.3 on GaP cell has been laid by work on light emitting diodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.