Abstract

We explored the photophysics of an all polymeric solar system based on the combination of the wide bandgap polymers poly(3-hexylthiophene) (P3HT) as donor and low bandgap polymer poly{[N,N-9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)} (P(NDI2OD-T2)) as an acceptor blend active layer in 2-methyl anisole using airbrush spray coating method. Polyethyleneimine ethoxylated (PEIE) is used as the surface modifier and SnO2 as an anode, to minimize the chemical damage of the transparent conducting electrode. The molecular aggregations were investigated by means of absorbance, photoluminescence measurements and atomic force microscopy. The current density–voltage characteristics were examined using an Oriel 1000W solar simulator under the illumination condition through the simulated solar light with 100mWcm−2 (AM 1.5G). The power conversion efficiency (PCE) of about 5.6% is been reported for the photovoltaic device and this outcome indicates that these spray coating method can be a feasible technique when compared with other high-cost vacuum deposition techniques for mass production and low-cost roll to roll based fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.