Abstract

A doubly resonant external ring cavity with a low finesse for the signal field is used to improve the frequency upconversion efficiency of a weak 1583 nm signal laser to 636 nm by mixing with a resonance power enhanced 1064 nm pump laser in a 25 mm periodically poled lithium niobate crystal. The process of frequency upconversion is described and optimized by the doubly resonant cavity-enhanced sum frequency generation theory under the condition of undepleted pump approximation. By selecting the suitable reflectivity of the signal input mirror and the incident pump power, a cavity-enhanced frequency conversion efficiency of 94.6% was obtained for signal powers up to 25 mW with an input pump power of 780 mW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call