Abstract
We investigated a flat-type p*-p LED composed of a p*-electrode with a local breakdown conductive channel (LBCC) formed in the p-type electrode region by applying reverse bias. By locally connecting the p*-electrode to the n-type layer via an LBCC, a flat-type LED structure is applied that can replace the n-type electrode without a mesa-etching process. Flat-type p*-p LEDs, devoid of the mesa process, demonstrate outstanding characteristics, boasting comparable light output power to conventional mesa-type n-p LEDs at the same injection current. However, they incur higher operating voltages, attributed to the smaller size of the p* region used as the n-type electrode compared to conventional n-p LEDs. Therefore, despite having comparable external quantum efficiency stemming from similar light output, flat-type p*-p LEDs exhibit diminished wall-plug efficiency (WPE) and voltage efficiency (VE) owing to elevated operating voltages. To address this, our study aimed to mitigate the series resistance of flat-type p*-p LEDs by augmenting the number of LBCCs to enhance the contact area, thereby reducing overall resistance. This structure holds promise for elevating WPE and VE by aligning the operating voltage more closely with that of mesa-type n-p LEDs. Consequently, rectifying the issue of high operating voltages in planar p*-p LEDs enables the creation of efficient LEDs devoid of crystal defects resulting from mesa-etching processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.