Abstract
Anode slime which is produced by electrolytic refining of copper, is a significant source of copper production. However, conventional recovery methods for copper are characterized by complex process, huge amount of strong acid consumption and hazardous acid waste. Therefore, novel, green, and high-performance process for copper separation was developed. In this paper, a hydrometallurgical process for copper recovery from copper anode slime was proposed with ionic liquid leaching – precipitation – calcination routes. 1-butly-3-methyl imidazolium chloride (BmimCl) was used as a leaching agent. According to the hybrid Taguchi/Box-Behnken optimization, the optimum leaching conditions for copper leaching were determined as 80 % of ionic liquid concentration, 95 °C of temperature, 4.5 h of time, and 0.07 of solid/liquid ratio. Validation tests performed under optimum leach conditions confirmed the feasibility of the model and 95 % of copper leaching efficiency was obtained. Precipitation with ammonium hydroxide solution at room temperature and calcination at 600 °C processes resulted in a highly pure copper recovery as CuO. Also, under optimum conditions, highly soluble lead was easily separated after filtration by cooling in the form of PbSO4.This hydrometallurgical process is found to be simple, environmentally friendly, and adequate for the recovery of copper from copper anode slime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.