Abstract

Seeking good error correcting codes to improve the efficiency of continuous-variable quantum key distribution (CVQKD) reconciliation is a concerning issue. Due to the introduction of multidimensional reconciliation, the error correcting techniques in the classical binary-input additive white Gaussian noise channel are applicable to CVQKD. In this Letter, we apply the quasi-cyclic low-density parity-check (QC-LDPC) codes, which are specified in 5G protocol, to the reconciliation process. Simulation results show that the reconciliation efficiency can reach 92.6% when the code rate is 22/68 and the signal-to-noise ratio is 0.623. Such a new error correcting code points out a new direction for the development of CVQKD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call