Abstract

The rapid development of perovskite solar cells (PSCs) has stimulated great interest in the fabrication of colorful PSCs to meet the needs of aesthetic purposes in varied applications including building integrated photovoltaics and wearable electronics. However, it remains challenging to prepare high-efficiency PSCs with attractive colors using perovskites with broad optical absorption and large absorption coefficients. Here we show that high-efficiency PSCs exhibiting distinct structural colors can be readily fabricated by employing TiO2 nanobowl (NB) arrays as a nanostructured electron transport layer to integrate with a thin overlayer of perovskite on the NB arrays. A new crystalline precursor film based on lead acetate was prepared through a Lewis acid-base adduct approach, which allowed for the formation of a uniform overlayer of high-quality CH3NH3PbI3 crystals on the inner walls of the NBs. The PSCs fabricated using the TiO2 NB arrays showed angle-dependent vivid colors under light illumination. The resultant colorful PSCs exhibited a remarkable photovoltaic performance with a champion efficiency up to 16.94% and an average efficiency of 15.47%, which are record-breaking among the reported colorful PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call