Abstract

With the development of aerospace science and technology, requirements for propellants are increasingly high. The thermal decomposition behavior of ammonium perchlorate (AP) directly influences the combustion performance of composite solid propellants. Catalysts play an important role in improving the thermal decomposition behavior of AP. In this study, three novel metal-organic frameworks (MOFs) were prepared using a straightforward method, namely Co[N(CN)2]2 (1; nitrogen content: 43.5%), Cu[N(CN)2]2 (2; nitrogen content: 43.0%), and Pb[N(CN)2]2 (3; nitrogen content: 24.8%). Their crystal structures were characterized and analyzed through single-crystal X-ray diffraction, forming interesting three-dimensional architectures. Moreover, derived composite catalysts under air (4, 6, and 8) or nitrogen (5, 7, and 9) atmosphere were generated by heating MOFs 1, 2, and 3–500 ​°C at a heating rate of 5 ​°C·min−1. The derived catalyst 4 exhibited the best performance. It reduced the decomposition peak temperature of AP by 81.9 ​°C, increased the heat release from 785 ​kJ·g−1 to 1232 ​kJ·g−1, and decreased the apparent activation energy (Ea) of AP from 223 ​kJ·mol−1 to 145 ​kJ·mol−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call