Abstract

We have previously demonstrated that absorption of a single photon by a nanocrystal quantum dot can generate multiple excitons with an efficiency of up to 100%. This effect, known as carrier multiplication, should lead to substantial improvements in the performance of a variety of optoelectronic and photocatalytic devices, including solar cells, low-threshold lasers and entangled photon sources. Here we present detailed analysis of the dynamics that govern the ultrafast growth of multi-exciton populations in CdSe and PbSe nanocrystals and propose a model of how such populations arise. Our analysis indicates that the generation of multi-excitons in these systems takes less than 200 fs, which suggests that it is an instantaneous event. We explain this in terms of their direct photogeneration via multiple virtual single-exciton states. This process relies on both the confinement-enhanced Coulomb coupling between single excitons and multi-excitons and the large spectral density of high-energy single- and multi-exciton resonances that occur in semiconductor nanocrystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call