Abstract
Polycrystalline Cd{sub 1-x}Zn{sub x}Te and Cd{sub 1-x}Mn{sub x}Te films with a band gap of 1.7 eV were successfully grown on glass/SnO{sub 2}/CdS substrates by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. Polycrystalline Cd{sub 1-x}Zn{sub x}Te films grown by MBE resulted in uniform composition and sharp interfaces. However, polycrystalline Cd{sub 1-x}Mn{sub x}Te films grown by MOCVD showed nonuniform compositions and evidence of manganese accumulation at the Cd{sub 1-x}Mn{sub x}Te/CdS interface. We found that manganese interdiffuses and replaces cadmium in the CdS film. By improving the CdTe/CdS interface and, thus, reducing the collection function effects, the efficiency of the MOCVD CdTe cell can be improved to about 13.5%. MBE-grown CdTe cells also produced 8%--9% efficiencies. The standard CdTe process was not optimum for ternary films and resulted in a decrease in the band gap. Recent results indicate that CdCl{sub 2} + ZnCl{sub 2} chemical treatment may prevent the band-gap reduction, and that chromate etch (rather than bromine etch) may provide the solution to contact resistance in the ternary cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.