Abstract

We propose a method for coupling a tapered optical fiber to an inverted tapered SiN waveguide by fabricating a microfiber using 3D nanoprinting lithography. The microfiber consists of three parts: a tapered cladding cap, an S-bend, and a straight part, all composed of high-refractive-index material. Light is adiabatically coupled from the tapered fiber to the printed microfiber through the cladding cap. The light is then transmitted through the S-bend and the straight part with low loss and is finally coupled to the waveguide through the evanescent field. In the simulation, our design can achieve a high coupling efficiency (TE mode) of ∼97% at a wavelength of 1542nm with a wide bandwidth of ∼768n m at the 1-dB cutoff criterion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.