Abstract
A novel high efficiency asymmetrical half-bridge converter using a self-driven synchronous rectifier is presented. The proposed converter improves the system efficiency using the characteristics of the asymmetrical half-bridge converter and the self-driven synchronous rectifier. The synchronous rectifier applied to the proposed converter is the new topological synchronous rectifier, which is a slightly modified type of the conventional synchronous rectifier used in the conventional asymmetrical half-bridge converter. The type of the new topological synchronous rectifier slightly changes the transformer structure and the synchronous switch connection in the asymmetrical half-bridge converter with a conventional self-driven synchronous rectifier. The operational principle of the proposed converter is explained in detail. Since the proposed converter utilises the transformer leakage inductor as its resonant inductor, its structure is simplified. A design example for a 90 W (12 V/7.5 A) prototype is discussed in detail. Experimental results are shown for the designed prototype converter under universal AC input voltage (180–265 V). It is shown that the efficiency of the proposed converter can be significantly improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.