Abstract

We present preparation of asymmetric grating with higher diffraction efficiency in quantum dot molecules by combining the tunneling effect and parity-time antisymmetry. In the presence of tunneling between two quantum dots, the system exhibits the striking PT antisymmetry via spatially modulating the driving field and the detuning with respect to the driven transition. For this reason, the asymmetric grating could be achieved. The results show that the diffraction efficiency can be adjustable via changing the driving intensity, detuning, tunneling strength, and interaction length, and then the high-order diffraction can be reached. The scheme provides a feasible way to obtain the direction-controlled diffraction grating, which can be helpful for optical information processing and realization of controllable optical self-image.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call