Abstract

We have succeeded in developing top-emitting organic light-emitting diodes (OLEDs) with high efficiency and high operational stability using an antioxidant buffer layer. V2O5 was selected as the antioxidant buffer layer to suppress the degradation of the organic materials of OLEDs caused by active oxygen during buffer layer deposition and the damage caused by the bombardment of high-energy particles during transparent electrode sputtering. The top-emitting device with a V2O5 buffer layer had the same current density–voltage (J–V) characteristics as the bottom-emitting device with the same material system. The quantum efficiency of the top-emitting device was about 5%, the same as that of the bottom-emitting device. The time required for luminance to drop to 90% of the initial value of the top-emitting device was over 700 h, which is longer than that of the bottom-emitting device (300 h). From X-ray photoelectron spectroscopy (XPS) analysis of the interface between organic materials and V2O5, it was determined that there was no degradation of organic materials under V2O5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.